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Transition from Poisson to Gaussian unitary statistics: The two-point correlation function
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Ecole Polytechnique Fe´dérale de Lausanne, Institut de Physique The´orique, PHB Ecublens, CH-1015 Lausanne, Switzerland

Boris Shapiro†

Department of Physics, Technion, Israel Institute of Technology, Haifa 32000, Israel
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We study the two-point correlation function in an ensemble of Hermitian random matrices~the Rosenzweig-
Porter matrix model!. This ensemble is not invariant under unitary transformations and it exhibits a crossover
from Poisson to Wigner-Dyson statistics. Extending the recent method of Brezin and Hikami, we derive an
expression for the two-point function~in the limit of infinite matrix size! and analyze some limiting cases.
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I. INTRODUCTION

Energy spectra of complex quantum systems often exh
a crossover from the Poisson statistics of uncorrelated le
to the Wigner-Dyson statistics, with its characteristic lev
repulsion and rigidity. There is therefore some interest
designing and studying random matrix ensembles that co
interpolate between these two extremes@1#. One such gener
alization goes back to the work of Rosenzweig and Porter@2#
on complex atomic spectra. They have studied, numerica
random matrices with enhanced~as compared with the stan
dard ensembles! weight for the diagonal elements. A sligh
generalization of the Rosenzweig-Porter matrix model le
to the following ensemble forN3N Hermitian matrices:

H5A1
l

Na V, ~1.1!

whereA is a random diagonal matrix, i.e.,

A5diag~a1¯aN!, ~1.2!

with some probability distributionp(a) for its statistically
independent elements.V is a real or complex Hermitian ma
trix, whose matrix elements are supposed to be independ
with a Gaussian distribution of unit variance. There is no lo
of generality, by consideringA to be diagonal as long as w
are interested only in correlations functions of the eigenv
ues ofH.

Different behavior can be expected by varying the ex
nenta. If a5 1

2 , one expects Gaussian orthogonal ensem
~GOE! or Gaussian unitary ensemble~GUE! statistics
whereas ifa.1 the statistics should be of the Poisson typ
It seems that the only way to obtain new statistics is
choosea51. For technical reasons, up to now only the ca
of a complex HermitianV matrix has been treated. In a
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important work, which has inspired us, Brezin and Hika
@3#, abbreviated in the following as BH, showed that wh
a5 1

2 , and for any fixed matrixA, the statistics is GUE.
Pandey@4# has discussed the casea51 in great generality,
using a Fokker-Planck equation for the probability distrib
tion of eigenvalues. In the complex case, he could succ
fully use the fact that this equation is integrable and gave
expression for the two-point correlation function and t
spectral form factor in a number of cases, including the o
discussed here.

Unfortunately, no derivation of the result was given. Mo
recently, Guhr and Guhr and Mu¨ller-Groeling @5# have de-
rived a double-integral representation of the two-point cor
lation function, using a variant of the supersymmetric tec
nique. In our opinion, however, this work rests on
unproven prescription for obtaining the correlation functio
from averages of advanced Green’s functions only.

Finally, Altland et al. @6# using perturbation theory inl
obtained a closed expression for the two-point correlat
function. However, since they kept the imaginary part of t
energy nonzero, before going to the largeN limit their ex-
pression gives only an ‘‘overview’’ of the picture: It is lim
ited to large distances and completely misses the fine st
ture of the correlation function at shorter distances.

In the present paper, we look again at this problem~in the
complex case!, using BH strategy. We show first that th
density of statesn(E) is given byp, and that if we unfold
the two-point correlation function, in the usual way in e
ergy, and also in the coupling constantl replacing it by
l/n(E), then we get a universal function, which coincid
with that given by Pandey. Our approach gives more na
rally the spectral form factor. Both quantities can be e
pressed as integrals of Bessel functions with imaginary ar
ments. Quite generally, we find that the model giv
repulsion of levels at short distances and attraction of lev
at long distances. The small coupling limit~close to Poisson!
and the strong coupling limit~close to GUE! are described
explicitly. In the small coupling limit, we recover the resul
of Leyvraz and Seligman@7# obtained by a perturbation tech
nique.
400 © 1998 The American Physical Society
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II. PROBABILITY DISTRIBUTION OF EIGENVALUES
AND DENSITY OF STATES

We consider an HamiltonianH of the form

H5A1V, ~2.1!

A being a fixed matrix andV a matrix belonging to the
unitary ensemble of probability distribution

P~V!;expF2
1

2s
tr V2G , ~2.2!

s being a parameter whose dependence onN will be fixed
later.

The probability distribution ofH will be therefore

P~H !;expF2
1

2s
tr H21

1

s
tr AHG . ~2.3!
In order to obtain the probability distributionW(l1¯lN)
for the eigenvaluesl j of H, one integrates over the unitar
matricesU diagonalizingH, by using the Harish-Chandra
Itzykson-Zuber identity@1#

E dU expF 1

s
tr AUlU‡G5

c

D~l!D~a!
det expS ail j

s D
~2.4!

the variablesaj being the eigenvalues of the matricesA and
D(a) being the van der Monde determinant

D~a!5)
i , j

N

~ai2aj !. ~2.5!

c is a constant depending onN.
If we use the identity
E dl1•••dlND~l!expF2
1

2s (
i 51

N

~l i2ai !
2G5D~a!~2ps!N/2, ~2.6!

whose proof is given in the Appendix, for completeness, we get for the normalized probability distributionW of the eigen-
values

W~l1¯lN!5
1

N! S 1

2ps D N/2 D~l!

D~a!
expF2

1

2s (
i 51

~ai
21l i

2!Gdet expS 1

s
ail j D . ~2.7!

In what follows, we will always consider average values of symmetric functions of the eigenvaluesF(l1 ,...,lN), with respect
to the distributionW. In such a case the average value can be simply written as

^F&W5S 1

2ps D N/2 1

D~a!
E dl1¯dlNF~l1¯lN!D~l!expF2

1

2s (
i

~l i2ai !
2G ~2.8!
te
because the determinant of the matrix exp@(1/s)ail j # can be
simply replaced byN!exp@(1/s)( iail i #.
Thus the full average of a symmetric functionF over the
ensemble ofH matrices defined by Eq.~2.1! will be

F̄5E da1¯daN)
i 51

N

p~ai !^F&W

since we consider a model where all theaj are statistically
independent and identically distributed.
Following BH, it appears more convenient to compu
first the Fourier transforms of correlation functions, i.e.,

C1~ t !5(
k

exp~ i tlk!,

~2.9!

C2~ t,t8!5(
kÞ l

exp~ i tlk1 i t 8l l !.

Since from Eq.~2.6! follows that
E dl1¯dlN expF(
i

bil i GD~l!expF2
1

2s (
i

~l i2ai !
2G5D~a1bs!~2ps!N/2 expF(

i
aibi1

s

2 (
i

bi
2G

~2.10!

we get

^C1&W5exp2
st2

2 (
k

exp~ i tak!)
j Þk

S 11
i ts

ak2aj
D ~2.11!
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and

^C2&W5expF2
s

2
~ t21t82!G(

kl
exp~ i tak1 i t 8al !)

j Þk
S 11

i ts

ak2aj
D)

j Þ l
S 11

i t 8s

al2aj
DF~ak ,al !, ~2.12!

where

F~ak ,al !5
al2ak

al2ak2 i ts

al2ak1 i t 8s2 i ts

al2ak1 i t 8s
. ~2.13!

It remains to average over thea’s. For this purpose we follow BH and use the following integral representations for^C1&W and
^C2&W :

^C1&W5expS 2
st2

2 D 1

i ts R
GR

dz

2p i
exp~ i tz!)

j 51

N S 11
i ts

z2aj
D ~2.14!

and

^C2&W52expF2
s

2
~ t21t82!G 1

tt8s2 R
GR

dz

2p i R
GR

dz8

2p i
exp@ i ~ tz1t8z8!#)

j 51

N S 11
i ts

z2aj
D S 11

i t 8s

z2aj
DF~z,z8!,

~2.15!
iz
o
e
e

it

-

-
it

f

n
the

in
GR being the contour formed by a rectangle of vertical s
2e and horizontal one 2R encircling the origin. One needs t
chooseR.supj uaj u, and in Eq.~2.15! one needs to impos
that utu.2e and ut8u.2e, in order to avoid the poles in th
function F(z,z8) defined by Eq.~2.13!

F~z,z8!5
z82z2 is~ t2t8!

z82z1 i t 8s

z82z

z82z2 i ts
. ~2.16!

In this way, one gets for the Fourier transform of the dens
of states:

C̄1~ t !5expS 2
s

2
t2D 1

ist R
GR

dz

2p i

3 exp~ i tz!S 11 ist K 1

z2aL D N

, ~2.17!

where from now on̂ •& will designate an average with re
spect to the variablea, i.e.,

K 1

z2aL 5E da p~a!
1

z2a
. ~2.18!

Up to now, the validity of Eq.~2.17! is guaranteed only for
probability distributions of thea’s of bounded support. How
ever, since, as is easily checked, we can take the limR
→` in this formula, the contourGR becoming the contourG
made of the two linesx6 i«. In this way the formula be-
comes valid for distributionp(a) of unbounded support.

Equation~2.17! holds for anyN. It is instructive to con-
sider theN→` limit, in order to exhibit the importance o
the parameters.

We can rewrite Eq.~2.17! as
e

y

1

N
C̄1~ t !5

1

N
expF2

st2

2 G R
G

dz

2p i
eitz

3(
j 50

N S N
j D ~ ist ! j 21K 1

z2aL j

. ~2.19!

The j 50 term vanishes. Thej 51 term does not depend o
N. The behavior of higher terms depends on the value of
parameterNs. Since we are interested in the case whereNs
tends to zero, we see that all terms beyondj >2 disappear so
that

lim
N→`

1

N
C̄1~ t !5 R

G

dz eitz

2p i K 1

z2aL 5^eita&. ~2.20!

Hence the average density of statesn~l! is simply given by
p(l) @6# in our case.

III. THE SPECTRAL FORM FACTOR

We want now to compute theN5` limit of the correla-
tion functionC(t,t8) defined by

NC~ t,t8!5C̄2~ t,t8!2C̄1~ t !C̄1~ t8!. ~3.1!

From Eq.~2.14! and~2.15!, we see that we can represent it
the form

C~ t,t8!5@K1~ t,t8!1K2 ,~ t,t8!#expF2
s

2
~ t21t82!G .

~3.2!

with
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K1~ t,t8!5
1

Ntt8
R

G

dz

2p i R
G

dz8

2p i
exp@ i ~ tz1t8z8!#

3@gN~z,z8!2rN~z/t!rN~z8/t8!# ~3.3!

and

2K2~ t,t8!5
1

N~t1t8!
R

G

dz

2p i R
G

dz8

2p i

3 exp@ i ~ tz1t8z8!#gN~z,z8!

3F 1

z2z81t
1

1

z82z1t8G , ~3.4!

where we used the notation

t5 i ts,

t85 i t 8s, ~3.5!

g~z,z8!511ta~z!1t8a~z8!1
tt8

z2z8
@a~z8!2a~z!#

~3.6!

with

a~z!5 K 1

z2aL , ~3.7!

r~z/t!511ta~z!,
~3.8!

r~z8/t8!511t8a~z8!.

From now on, we will take

s5l2/N2. ~3.9!

In order to get a finite limit forC, it is appropriate to choose
the scale, defined by

t5
T

2
1Ns,

~3.10!

t85
T

2
2Ns,

and keepT ands fixed whenN tends to`. We then choose
«5d/N in the contourG and represent the variablesz andz8
by

z5x1
y

2N
2

id

N
q,

~3.11!

z85x2
y

2N
2

id

N
q8,

q andq8 being equal to61, depending on the branch ofG
on which the variables stay. We note that the functiona(z)
defined by Eq.~3.7! is such that

aS x2
idq

N D5gq~x!10S 1

ND
with

gq~x!5PE p~a!da

x2a
1 ipqp~x!. ~3.12!

Since t5 isl2/N and t852 isl2/N, at the order 1/N2, it
follows that

r~z/t!511
isl2

N
gq~x!1OS 1

N2D
~3.13!

r~z8/t8!512
isl2

N
gq8~x!1OS 1

N2D
and if q5q8

g~z,z8!511OS 1

N2D ~3.14!

but if q52q8

g~z,z8!512
2psl2

N
p~x!F11

sl2iq

qy22idG1OS 1

N2D .

~3.15!

From these results, one can derive the desired asymp
behavior

K
2
1~ t,t8!5(

q
E dx p~x!eiTx22pl2sqp~x!L

2
1, ~3.16!

where

L
2
15E

2`

1` dy

2p
eib~y2 id!FexpS 2

ia

y2 id D21GF
2
1

~3.17!

with F151/a

F25
1

4pp

1

@y1 i ~l2sq/22d!#2 ~3.18!

and

a5pl4s2p,
~3.19!

b52sq.

It remains to evaluate these integrals. One first notices
they vanish whenb is negative. This implies that in Eq
~3.16!, one can drop the summation onq and replacesq by
usu.

L1 can be evaluated in closed form and is given by

L15
1

Aab
I 1~2Aab!; ~3.20!

I 1(z) being the modified Bessel function given by the ser

I 1~z!5(
j 50

`
~z/2!2 j 11

j ! ~ j 11!!
. ~3.21!
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In evaluatingL2 for positive b, one notices that whenb is
positivel2sq/22d5l2usu/22d is positive because the for
mula for K2 is valid under this constraint only, forN very
large because of the conditionutu.2d/N and ut8u>2d/N
that we needed to impose in Eq.~2.15!. One can then expres
L2 in the form

L252
b2

4pp S a

bD 1/2E
0

` dt t

At11

3I 1@2Aab~ t11!#expS 2t
b2l2

4 D . ~3.22!

Grouping all these results we can finally write the correlat
function C in the form

C~ t,t8!52E dx p~x!eiTxSS u5
usu

p~x!Y L5lp~x! D ,

~3.23!

where the functionS(u/L) is given by

S~u/L!52
2

g
I 1~g!exp@22pL2u2L2u2#,

1
u

2p
gE

1

`

dt~ t221!I 1~gt !

3exp@2t2L2u222pL2u#, ~3.24!

with

g5A8pL4u3. ~3.25!

These expressions are our main result. We prove now thS
is the unfolded spectral form factor.

Indeed, by definition,C(t,t8) is related to the eigenvalue
correlation functions:

r2~x,x8!5(
kÞ l

d~x2lk!d~x82l l !,

~3.26!

r1~x!5(
k

d~x2lk!

by the equation

C~ t,t8!5E dxE dx8ei ~ tx1t8x8!

3
1

N
@r2~x,x8!2r1~x!r1~x8!#. ~3.27!

Let us make in this integral the change of variables@n(E)
being the density of states#

x5E1
r

2Nn~E!
,

~3.28!

x85E2
r

2Nn~E!
,

n

and go from the variables (t,t8) to (T,s) as defined by Eq.
~3.9!.

Then we can see that we can expressC as

C~ t,t8!52E dEn~E!eiTEE dr YN~E,r !expS ir
s

n~E! D
~3.29!

where

YN~E,r !5
1

@Nn~E!#2 H r1S E1
r

2Nn~E! D
3r1S E2

r

2Nn~E! D
2r2S E1

r

2Nn~E!
, E2

r

2Nn~E! D J
~3.30!

is the unfolded~in energy! connected two-point correlation
function. Notice that in our casen(E)5p(E).

Our result for the asymptotic behavior forC can therefore
be interpreted as saying that if we unfoldYN(E,r ) in the
coupling constant too, i.e., replacel by L\n(E), then
YN(E,r ) tends to a functionY(r /L) independent ofn and

E drY~r /L!exp~ iru !5S~u/L! ~3.31!

is the spectral form factor. In fact, we foundS(u)5S(uuu).
We will now analyze in more detail the unfolded form fact
S(u/L) and the connected correlation functionY(r /L).

IV. TWO-POINT CORRELATION FUNCTION.
STRONG AND WEAK COUPLING LIMITS

Let us first give some properties ofS andY valid for any
coupling L. Developing in seriesI 1(gt) in Eq. ~3.24!, and
integrating overt, one can rewriteS in the form

S5
1

2pL2u F (
k52

`

kS 2p

u D k/2

I k~g!Gexp@2L2u222pL2u#,

~4.1!

whereI k is the modified Bessel function of orderk.
This expression shows thatS is positive, a property pos

sessed by the GUE form factor. Since the correlation fu
tion Y is given by

Y~r !5
1

p E
0

`

cosur S~u!du ~4.2!

we see immediately thatY(o).0 and Y9(o),0, which
show that we havelevel repulsion at short distances.

Consider now the long distance behavior. From Eq.~4.1!
one can see that for smallu

S~u!;2pL2u. ~4.3!

This implies that
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E drY~r !50, ~4.4!

to be contrasted with the sum rule

E drY~r !51 ~4.5!

in the GUE case, characteristic of the long range Coulo
repulsion of the levels. Moreover, an integration by parts
Eq. ~4.2! gives

Y~r !52
2L2

r 2 2
1

pr 2 E
0

`

cosur S9~u!du. ~4.6!

This shows that we have anattraction of levels at long dis-
tances, and that correlations decay very slowly, like 1/r 2. In
order to study the asymptotic behavior ofS and Y, it is
helpful to look for another integral representation of the
quantities. It can be easily checked from the series expan
of the Bessel functionI k , that we have

S 2p

u D k/2

I k~g!5 R
uzu.1

dz

2p i

1

zk11 expFL2u2

z
12pL2uzG .

~4.7!

Inserting this representation in the equation~4.1! for S, we
can write it in the form

S5 R
uzu.1

dz

2p i

1

z

1

z21 S 12
u

2pz2D
3exp@2L2u2~12z21!22pL2u~12z!# ~4.8!

when, u/2p.1, we choose for the integration path onz a
circle of radiusAu/2p. We can do the same choice whe
u/2p,1, if we take into account the contribution of the po
at z51. In this way, one gets

S~u/L!2S~u/`!52
2

p E
21

1

dy
@2yAu/2p11#A12y2

u/2p12yAu/2p11

3exp$22pL2u@u/2p

12yAu/2p11#%, ~4.9!

where

S~u/`!5uS 12
u

2p D S 12
u

2p D ~4.10!

is the GUE form factor. The corresponding equation for
correlation functionY is

Y~r /L!2Y~r /`!

52
4

p E
0

`

dx cos 2prxE
21

1 ~2yAx11!~12y2!1/2

x12yAx11

3exp$2~2pL!2x@x12Axy11#% ~4.11!

and
b
n

e
on

e

Y~r /`!5S sin pr

pr D 2

. ~4.12!

This expression coincides with that of Pandey@4# if we iden-
tify our L2 with half of his.

This representation ofY is useful to analyze thelarge L
limit, becauseL2 appears as the parameter of a Lapla
transform. The dominant contributions to the integral w
come therefore from the neighborhood ofx50 and of x
51 andy521.

A careful analysis shows that the contribution fromx
50 gives

dY1522
L2

~2pL2!21r 2 10~L23!

and the contribution fromx51, y521 gives

dY2512
2

L2p3 Re exp~2p ir !E
0

`

dyE
2`

1`

dx

3 expS y2

x21y2DexpF2~x21y2!1 i
4pu

&

r

LG
1O~L25/2!.

Evaluating the integral and adding these contributions
find that

Y~r !52
2L2

~2pL2!21r 22
1

2~pr !2

3 H cos 2pr expF2S r

L D 2G21J 1O~L25/2!.

~4.13!

It is important to note that this asymptotic expansion ho
uniformly in r , i.e., the symbolO(L25/2) means a term
bounded by a constant timesL25/2, for all r .

If we look at the largeL limit, from the point of view of
the form factor, we can see that the neighborhood of
Heisenberg time is critical, in the sense that the followi
scaling limit exist:

lim
L→`

2pL@S~u/L!2S~u/`!#S u52p1
2x

L D
5

1

Ap
E

1

` dt

t3/2 exp~2tx2!. ~4.14!

Let us comment briefly about the comparison of our res
for the largeL limit @Eq. ~4.11!# with previous work. We
find agreement with the result of Guhr and Mu¨ller-Groeling
@5# only in the regimer !L2. Our result is consistent with
that of perturbation theory@6# if we assume thatr @1 and
average over few level spacing. In this case we get

Yp~r !52
2L2

r 21~2pL2!2 1
1

2p2r 2 ,
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which corresponds to the first two terms, which are domin
in Eq. ~14! of @6# ~thel in this reference should be identifie
with 2L2!.

It remains finally to examine the smallL limit. For this
purpose, it appears useful to have another integral repre
tation of Y. Using Eq. ~4.7! and ~4.8!, one can see tha
d2S/du2 can be expressed in terms of Bessel functionsI k .
Using recursion formula for these functions and the expr
sion ~4.6! for Y, one can express the correlation function
the form

Y~r !52
2L2

r E
0

`

du sin ur
2

g
@ I 1~g!2A8u/pI 2~g!#

3exp@2L2u222pLu#1
2L2

r E
0

` cosur

u

3@ I 2~g!2A2u/pI 3~g!#exp@2L2u222pLu#.

~4.15!

This expression shows that if one keepsr /L fixed and letsL
tend to zero, one obtains a well defined quantity

Y~r !512
r

L E
0

`

du sinu
r

L
exp~2u2!1O~AL!,

~4.16!

which coincides with the perturbative result of Leyvraz a
Seligman@7#.

Note added in proof.In a recent work@8# Frahm, Guhr,
and Muller-Groeling have also derived the first term of
~4.13!, which was absent in previous publications of Gu
and co-workers. It was also pointed out in that manusc
,

t

n-

s-

r
t

that the perturbative result of Ref.@6# is compatible with the
exact result only up to orderl2 and deviates from the exac
result in higher orders.
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APPENDIX

We give here a short proof of the basic identity 2, used
the text. Let

G~a!5~2ps!2N/2E dl1¯dlN D~l1a!

3expS 2
1

2s (
j 51

N

l j
2D ,

where

D~l1a!5 )
N> i . j >1

~l i1ai2l j2aj !.

It is easily seen thatG(a) is a totally antisymmetric polyno-
mial in thea’s of degreeN21 in each variableaj . There-
fore

G~a!5CsD~a!.

But sinceG(a)5D(a) whens50, we conclude thatG(a)
5D(a), for all s.
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