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Transition from Poisson to Gaussian unitary statistics: The two-point correlation function
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We study the two-point correlation function in an ensemble of Hermitian random mafttieeRosenzweig-
Porter matrix model This ensemble is not invariant under unitary transformations and it exhibits a crossover
from Poisson to Wigner-Dyson statistics. Extending the recent method of Brezin and Hikami, we derive an
expression for the two-point functiofin the limit of infinite matrix siz¢ and analyze some limiting cases.
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I. INTRODUCTION important work, which has inspired us, Brezin and Hikami
[3], abbreviated in the following as BH, showed that when
Energy spectra of complex quantum systems often exhibite=%, and for any fixed matrixA, the statistics is GUE.
a crossover from the Poisson statistics of uncorrelated levelBandey[4] has discussed the cage=1 in great generality,
to the Wigner-Dyson statistics, with its characteristic levelusing a Fokker-Planck equation for the probability distribu-
repulsion and rigidity. There is therefore some interest intion of eigenvalues. In the complex case, he could success-
designing and studying random matrix ensembles that coultLlly use the fact that this equation is integrable and gave an
interpolate between these two extrerigs One such gener-  expression for the two-point correlation function and the
alization goes back to the work of Rosenzweig and Po#er  spectral form factor in a number of cases, including the one
on complex atomic spectra. They have studied, numericallydiscussed here.
random matrices with enhancéals compared with the stan-  Unfortunately, no derivation of the result was given. More
dard ensemblgswveight for the diagonal elements. A slight recently, Guhr and Guhr and Mer-Groeling[5] have de-
generalization of the Rosenzweig-Porter matrix model leadsived a double-integral representation of the two-point corre-
to the following ensemble foN XN Hermitian matrices: lation function, using a variant of the supersymmetric tech-
nique. In our opinion, however, this work rests on an

_ A unproven prescription for obtaining the correlation functions
H=A+—V, (1.2 , .
N from averages of advanced Green'’s functions only.
Finally, Altland et al. [6] using perturbation theory in
whereA is a random diagonal matrix, i.e., obtained a closed expression for the two-point correlation
function. However, since they kept the imaginary part of the
A=diaga; --ay), (1.2 energy nonzero, before going to the lafgdimit their ex-

pression gives only an “overview” of the picture: It is lim-
with some probability distributiorp(a) for its statistically ited to large distances and completely misses the fine struc-
independent elementy. is a real or complex Hermitian ma- ture of the correlation function at shorter distances.
trix, whose matrix elements are supposed to be independent, In the present paper, we look again at this problenthe
with a Gaussian distribution of unit variance. There is no lossomplex casg using BH strategy. We show first that the
of generality, by considering to be diagonal as long as we density of states/(E) is given byp, and that if we unfold
are interested only in correlations functions of the eigenvalihe two-point correlation function, in the usual way in en-
ues ofH. ergy, and also in the coupling constaxtreplacing it by

Different behavior can be expected by varying the expo-\/»(E), then we get a universal function, which coincides
nente. If a=3, one expects Gaussian orthogonal ensemblevith that given by Pandey. Our approach gives more natu-
(GOB) or Gaussian unitary ensembléGUE) statistics rally the spectral form factor. Both quantities can be ex-
whereas ifa>1 the statistics should be of the Poisson type.pressed as integrals of Bessel functions with imaginary argu-
It seems that the only way to obtain new statistics is toments. Quite generally, we find that the model gives
choosex= 1. For technical reasons, up to now only the caseepulsion of levels at short distances and attraction of levels
of a complex HermitianV matrix has been treated. In an at long distances. The small coupling liMifose to Poisson

and the strong coupling limitclose to GUE are described

explicitly. In the small coupling limit, we recover the results
*Electronic address: Herve.Kunz@epfl.ch of Leyvraz and Seligmafv] obtained by a perturbation tech-
TElectronic addresgboris@physics.technion.ag.il nique.
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Il. PROBABILITY DISTRIBUTION OF EIGENVALUES
AND DENSITY OF STATES

We consider an HamiltoniaH of the form
H=A+V, (2.1

A being a fixed matrix and/ a matrix belonging to the
unitary ensemble of probability distribution

1
P(V)~ex;{ — —tr V?|, (2.2
20

o being a parameter whose dependenceNowill be fixed
later.
The probability distribution oH will be therefore

. 2.3

1 1
P(H)~exp{— —trH?>+ —tr AH
20 o
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In order to obtain the probability distributiod/(\---\y)
for the eigenvalues; of H, one integrates over the unitary
matricesU diagonalizingH, by using the Harish-Chandra,

Itzykson-Zuber identity 1]
det exp —
g

(2.9

1 o c
JdU ex ;trAU)\U _—A()\)A(a)

the variablesa; being the eigenvalues of the matricksand
A(a) being the van der Monde determinant

N
Aa)=]] (ai—a)).

| (2.5
i<j
c is a constant depending dh
If we use the identity
=A(a)(2mo)V?, (2.6)

1 N
f dX,-- -deA(x)exp[ ~ 5 2}1 (Nj—a;)2

whose proof is given in the Appendix, for completeness, we get for the normalized probability distriiodrthe eigen-
values

1

1 N/2 A()\)
wufmm=ﬁ«——

mex;{—%zl (ai2+)\i2) . (27)

'\ 270

1
det ex;{— A\
o

In what follows, we will always consider average values of symmetric functions of the eigen¥glugs.. \y), with respect
to the distributionW. In such a case the average value can be simply written as

1 N/2 1

270

<F>W:(

because the determinant of the matrix [g&fir)a;\;] can be
simply replaced byN!exp (1/a)=;ai\;].

Thus the full average of a symmetric functién over the
ensemble oH matrices defined by Ed2.1) will be

B N
F:f dal---da,\,ilj1 p(ai)(Fw

since we consider a model where all thgare statistically
independent and identically distributed.

f dhq---dhy exp[Z bi)\i}A()\)exF{_iz (A

we get

0_2

t
(C)w=exp— - zk‘, explita) [ 1

1
m j d)\ld)\NF()\l)\N)A()\)eXF{_%EI ()\i_ai)z

(2.9

Following BH, it appears more convenient to compute
first the Fourier transforms of correlation functions, i.e.,

cl(t)=§k) explithy),

(2.9
Co(t,t' )=, explith +it'\)).
k#1
Since from Eq.(2.6) follows that
—a)2|=A(a+bo)(2mo)V? exp{z aib;+ g > bf}
1 I
(2.10
1 2.11)
j#k ax—q; '
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and

it it'o

g
1+
ak_aj

1+

F(ak,a|), (213

(Chw= exp{ - % (t2+t’2)}2 exp(itak+it’a|)Hk
j#F

Kl a;—a,

j#l j

where

a;—ag a|_ak+it,0'_it0'

(2.13

F(ag,a,)= - -
(@ a) a—ay—itc a—actit'c

It remains to average over tlaés. For this purpose we follow BH and use the following integral representatiof€for, and
(Cow:

- ot?) 1 é dz i ﬁ 1+ ito 01
(Cow=exp ——| 7o 2 ORI L {14 o= (2.14
and
- AT 3€ dz 3€ dz ﬁ L it
(Cow=—exq =5 (w052 P 2mi Frp 2 SHI2HVZOIL {15 {1455 JF (220,
(2.195
|
I'r being the contour formed by a rectangle of vertical size 1— 1 ot? dz ..
2¢ and horizontal one R encircling the origin. One needs to N Ca(t)= N T 3% o
chooseR>sup|a;|, and in Eq.(2.15 one needs to impose
that |t|>2€ and|t’|>2e, in order to avoid the poles in the NNy 1\
function F(z,z') defined by Eq(2.13 xZO ( J. )(lot)"l ) (219
=

' —z—io(t—-t") z'-z

F(z.2)= z'—z+it'ec Z7Z'—z-ito

(2.16  Thej=0 term vanishes. Thg=1 term does not depend on
N. The behavior of higher terms depends on the value of the

In this way, one gets for the Fourier transform of the densityParameteNo. Since we are interested in the case wiéee

of states: :ﬁn?s to zero, we see that all terms beypr® disappear so
a
Ca(t) p( Utz) - fﬁ o 1 dz é% | 1
(=expg — 5t — 5 — z _
2 iot Jp, 2mi i — _/aita
R ,\IJITOCNcl(t) ﬁ = <z—a> (€. (2.20

. 1\
1+|0_t<ﬁ>) , (2.17

X exp(itz) Hence the average density of stai€s) is simply given by

. . . p(\) [6] in our case.
where from now or-) will designate an average with re-

spect to the variable, i.e., lll. THE SPECTRAL FORM FACTOR

1\ 1 We want now to compute thid=oo limit of the correla-
<z—a> _f da pa) =5 @18 ion functionC(t,t") defined by
Up to now, the validity of Eq(2.17) is guaranteed only for NC(t,t')=Cy(t,t')— C1(t)Cy(t"). (3.0

probability distributions of tha@’s of bounded support. How-
ever, since, as is easily checked, we can take the Rnit From Eg.(2.14 and(2.15, we see that we can represent it in
—oo in this formula, the contour' g becoming the contodr  the form
made of the two linex=*ie. In this way the formula be-
comes valid for distributiorp(a) of unbounded support. , , , o )
Equation(2.17) holds for anyN. It is instructive to con- C(Lt") =[Ky(t,1) + Ky, (11 )]exr{— 2 (P4t Z)}'
sider theN— oo limit, in order to exhibit the importance of (3.2
the parameteu.
We can rewrite Eq(2.17) as with
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Ky(t,t')= N77 é 20 P g—; exdi(tz+t'z")]
X[gM(z,2") = pN 1 pNZ'I7')] (3.3
and
Ka(t,t)= N(7+7') § 2 Jr 2mi
X exdi(tz+t’z’)]g“(z,z’)
1, + = ! = (3.9
z-72'+7 72/ —-z+71
where we used the notation
T=ito,
7' =it'o, (3.5

9(z,z")=1+71a(2) + 7' a(Z' )+ T,

[a(z)~a(2)]

(3.6
with
B 1
a(z)= >—al (3.7
p(zZl7)=1+71a(2), 3.9
p(Z'17")=1+7"a(Z").

From now on, we will take

o=N\3IN2. (3.9

In order to get a finite limit foiC, it is appropriate to choose

the scale, defined by

T
t= §+NS,
(3.10
, T
t'= E—NS,

and keepl ands fixed whenN tends tox. We then choose
e=6/N in the contoul” and represent the variablesindz’

by

N id
Z=X+ 75— =0,
2N N
(3.11)
| — y I5 !
Z=x N N9

g andq’ being equal to+ 1, depending on the branch bf
on which the variables stay. We note that the functiqz)
defined by Eq(3.7) is such that

1

N

i 69
a( X— W) =7y4(x)+0
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with

a)da
p)((_a +imqp(x).

')’q(x): Pf (3.12

Since r=isA?/N and 7' = —isA?/N, at the order M?, it
follows that

is\? 1
p(Z/T)=1+T ’yq(X)"rO ﬁz
(3.13
o is\? 1
p(Z' T ):1_T Vg (X)+O N2
and ifq=q’
1
g9(z,2')=1+0 W) (3.19
but if g=—q'
N 27rs\? s\2iq o 1
9(z,2")= N P +qy——2i5+ N2
(3.1

From these results, one can derive the desired asymptotic
behavior

K;(t,t’)=2 fdx p(x)eiTX*mzquL%, (3.1
q

where
Tedy o ia
— _7 (y—id) _ —
L% fﬁw 27Te exp( y=io 1}F%
3.19
1 1
P o [y Fi s g2—0) ]2 (318
and
a=mA4s?p, (319
b=2sq.

It remains to evaluate these integrals. One first notices that
they vanish wherb is negative. This implies that in Eq.
(3.16), one can drop the summation gnand replacesq by
|s].

L, can be evaluated in closed form and is given by

1
L;=—14(2yab); 3.2
=g Vab) (3.20
I,(z) being the modified Bessel function given by the series
* (2/2)21+1
1@D=2 T (3.2
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In evaluatingL, for positiveb, one notices that wheh is
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and go from the variableg,t’) to (T,s) as defined by Eq.

positive \2sg/2— 6=\2|s|/2— & is positive because the for- (3.9).

mula for K, is valid under this constraint only, fad very

large because of the conditidt|>246/N and |t'|=26/N

that we needed to impose in E@.15. One can then express

Then we can see that we can expr€sas

C(t,t’)=—J dEv(E)e‘TEf dr YN(E,r)exp(w —)

L, in the form (E)
b2 [a\Y2[= dtt (329
Lzz—m b . \/ﬁ where
b\? YNED= o [Er =
><|1[2\/ab(t+1)]exp(—t 7 ) (3.22 n(E )= [Nv(E)]? | 1 2Nv(E)
Grouping all these results we can finally write the correlation Xpq| E— ;)
function C in the form 2Nv(E)
r r
' iTx |s| _PZ(E+ , E- )}
C(t,t")=—] dx p(x)e'"*S| u= (x) A=Ap(x) ], 2Nv(E) 2Nv(E)
(3.23 (3.30

where the functiorS(u/A) is given by

2
S(u/A)=— p I (y)exd —2mA2u—A2u?],

4 th t2— 1)1, (yt

227, ( (1)
X exf —t?A2u?—2mA%u], (3.29
with

8mL4u’ (3.25

These expressions are our main result. We prove now3hat

is the unfolded spectral form factor

Indeed, by definitionC(t,t") is related to the eigenvalues

correlation functions:

p2(XX')= 2, 8(x= M) 8(X" = Ny),
(3.26
p1<x)=§ S(X—=Ny)
by the equation
C(t,t')=f de dx’ ™+ t'x)
1
X [P2(xX") = p1(X)pa(x")]. (3.2

Let us make in this integral the change of variadleéE)
being the density of statés

r

X=E+ oNuwE)’

(3.29
r
2N»(E)’

!

X'=E—

is the unfolded(in energy connected two-point correlation
function. Notice that in our case(E)=p(E).

Our result for the asymptotic behavior fGrcan therefore
be interpreted as saying that if we unfof,(E,r) in the
coupling constant too, i.e., replace by A\v(E), then
Yn(E,r) tends to a functiory(r/A) independent o¥ and

f drY(r/A)exp(iru)=S(u/A) (3.3)

is the spectral form factor. In fact, we fourg{u)=S(|ul).
We will now analyze in more detail the unfolded form factor
S(u/A) and the connected correlation functidigr/A).

IV. TWO-POINT CORRELATION FUNCTION.
STRONG AND WEAK COUPLING LIMITS

Let us first give some properties 8fandY valid for any
coupling A. Developing in serie$;(yt) in Eq. (3.24), and
integrating ovett, one can rewritéS in the form

k/2

I (y) |exd — A%u?—2mA%u],

4.9

1 (2
=—— k| —
kZZ (U

wherel, is the modified Bessel function of ordkr

This expression shows th&tis positive, a property pos-
sessed by the GUE form factor. Since the correlation func-
tion Y is given by

Y(r)=% J: cosur S(u)du (4.2

we see immediately tha¥(0)>0 and Y”(0)<0, which
show that we havéevel repulsion at short distances

Consider now the long distance behavior. From @&ql)
one can see that for small

S(u)~2mwA2u. 4.3

This implies that
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sin zrr | 2
J drY(r)=0, (4.4 Y(r/oo):( — ) (4.12
to be contrasted with the sum rule This expression coincides with that of Panddyif we iden-
tify our A2 with half of his.
J drY(r)=1 (4.5 This representation of is useful to analyze thiarge A
limit, becauseA? appears as the parameter of a Laplace

. - ransform. The dominant contributions to the integral will
in the GUE case, characteristic of the long range Coulomﬂéome therefore from the neighborhood o£0 and of x

repulsion of the levels. Moreover, an integration by parts in

' =1 andy=-1.
Eq. (4.2 es . I
@42 9V A careful analysis shows that the contribution from
2A2 1 (= =0 gives
YN=——7——3 cosur S’(u)du.  (4.6)
r mr 0 9
oY,=-2 +0(A73)
This shows that we have attraction of levels at long dis- ! (2wA?)*+r?

tances and that correlations decay very slowly, like2/In
order to study the asymptotic behavior 8fand Y, it is
helpful to look for another integral representation of these 5 . .
guantities. It can be easily checked from the series expansion 8Y,=+2-—>—=Re exp§27rir)f dyf dx
of the Bessel functiom, , that we have A 0 —w

and the contribution fronx=1, y=—1 gives

27 k’2| B \(ﬁ dz 1 AzuzjL2 A2 y? 224 Azu r
T k('y)— \Z|>12_1Ti2k+_1€X Z mTNATUZ|. X ex mex —(X y) IWK
4,
.7 +O(A 57,
Inserting this representation in the equatidnl) for S, we
can write it in the form Evaluating the integral and adding these contributions we
find that
. 3§ dz 1 1 1 u
a lz2/>1 2mi z z—1 2mwz? Y(r)=— 2A° B 1
(2wA%)°+r2  2(mr)?
xexgd —A%u3(1-z YH—-27A%u(1-2)] (4.9 ,
r -
when, u/27>1, we choose for the integration path ara X | cos 2rr exF{‘(x) }—1 +O(A 757,

circle of radius\u/27w. We can do the same choice when
u/27<1, if we take into account the contribution of the pole (413

atz=1. In this way, one gets It is important to note that this asymptotic expansion holds

- Famy uniformly in r, i.e., the symbolO(A~%?) means a term
[2yyulem+1]V1~y bounded by a constant times °?, for all r.
u/2m+2y\ul2m+1 If we look at the largeA limit, from the point of view of
the form factor, we can see that the neighborhood of the
Heisenberg time is critical, in the sense that the following

2 1
S(u/A)—S(ufwo)=— p f_ldy

x exp{ — 2w A2u[u/2m

+2yJu2r+17}, (4.9  scaling limit exist:

2Xx

where lim 27TA[S(u/A)—S(u/00)]<u=27T+ —)
A—o A
u u
su=di-gfl1-57] o 1 ot
=— f 3n GXK—tXZ). (4.19

is the GUE form factor. The corresponding equation for the Va J1

correlation functiony is ] ]
Let us comment briefly about the comparison of our result,

Y(r/A)—=Y(r/x) for the largeA limit [Eq. (4.11)] with previous work. We
find agreement with the result of Guhr and Mu-Groeling
4 (o 1 (zy\/;+ 1)(1—y?)Y2 [5] only in the regimer <AZ2. Our result is consistent with
- j dx cos ZTFXJ’ iy that of perturbation theor{6] if we assume that>1 and
0 -t X+2yyx+1 average over few level spacing. In this case we get
X exp{ — (27 A) X[ x+ 2 xy+ 17} (4.10

2A2 1

(=" gaarz t 2a7e

and
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which corresponds to the first two terms, which are dominanthat the perturbative result of R¢6] is compatible with the
in Eq. (14) of [6] (the X in this reference should be identified exact result only up to ordex? and deviates from the exact

with 2A2). result in higher orders.
It remains finally to examine the small limit. For this
purpose, it appears useful to have another integral represen- ACKNOWLEDGMENTS

tation of Y. Using Eq. (4.7) and (4.8, one can see that  One of us(B.S) thanks the EPF-L for hospitality, and S.
d“S/du“ can be expressed in terms of Bessel functibns  Hikami, M. Janssen, and R. Pnuni, for useful discussions.
Using recursion formula for these functions and the expresThis work was supported by a grant from Israel Science
sion (4.6) for Y, one can express the correlation function in Foundation(B.S) and the “Fonds national suisse de la re-
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2 o]
Y(r)=—& du sinur E[Il()/)—\/Sula-rlz(y)] APPENDIX
rJo Y We give here a short proof of the basic identity 2, used in
2A2 (= cosur the text. Let
xexfg —A2u?—2mwAu]+ — u

X[15(y)—2ul 7l 5(y)Jexd — A?u?>—27Au].

1 N
@15 xexp( Ly xf),
o
This expression shows that if one keepa fixed and letsA
tend to zero, one obtains a well defined quantity where

G(a):(zm)—wf drg--dhy A(N+a)

Y<f>=1—%f:dusinu%exp(—uzwom» Ata= [l (vtai-)-a).

(4.16 It is easily seen thaB(a) is a totally antisymmetric polyno-
which coincides with the perturbative result of Leyvraz andMial in thea’s of degreeN—1 in each variable, . There-
Seligman[7]. fore

Note added in proofln a recent wor8] Frahm, Guhr, G(a)=C,A(a).
and Muller-Groeling have also derived the first term of Eq 7
(4.13, which was absent in previous publications of GuhrBut sinceG(a)=A(a) wheno=0, we conclude thaG(a)
and co-workers. It was also pointed out in that manuscript=A(a), for all o.
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